Disrupted-in-Schizophrenia 1-mediated axon guidance involves TRIO-RAC-PAK small GTPase pathway signaling.

نویسندگان

  • Shih-Yu Chen
  • Pei-Hsin Huang
  • Hwai-Jong Cheng
چکیده

Defects in neuronal connectivity of the brain are well documented among schizophrenia patients. Although the schizophrenia susceptibility gene Disrupted-in-Schizophrenia 1 (DISC1) has been implicated in various neurodevelopmental processes, its role in regulating axonal connections remains elusive. Here, a heterologous DISC1 transgenic system in the relatively simple and well-characterized Caenorhabditis elegans motor neurons has been established to investigate whether DISC1 regulates axon guidance during development. Transgenic DISC1 in C. elegans motor neurons is enriched in the migrating growth cones and causes guidance defects of their growing axons. The abnormal axonal phenotypes induced by DISC1 are similar to those by gain-of-function rac genes. In vivo genetic interaction studies revealed that the UNC-73/TRIO-RAC-PAK signaling pathway is activated by ectopic DISC1 in C. elegans motor axons. Using in vitro GST pull-down and coimmunoprecipitation assays, we found that DISC1 binds specifically to the amino half of spectrin repeats of TRIO, thereby preventing TRIO's amino half of spectrin repeats from interacting with its first guanine nucleotide exchange factor (GEF) domain, GEF1, and facilitating the recruitment of RAC1 to TRIO. In cultured mammalian cells, RAC1 is activated by increased TRIO's GEF activity when DISC1 is present. These results together indicate that the TRIO-RAC-PAK signaling pathway can be exploited and modulated by DISC1 to regulate axonal connectivity in the developing brain.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Caenorhabditis elegans P21-activated kinases are differentially required for UNC-6/netrin-mediated commissural motor axon guidance.

P21 activated kinases (PAKs) are major downstream effectors of rac-related small GTPases that regulate various cellular processes. We have identified the new PAK gene max-2 in a screen for mutants disrupted in UNC-6/netrin-mediated commissural axon guidance. There are three Caenorhabditis elegans PAKs. We find that each C. elegans PAK represents a distinct group previously identified in other s...

متن کامل

Trio Combines with Dock to Regulate Pak Activity during Photoreceptor Axon Pathfinding in Drosophila

Correct pathfinding by Drosophila photoreceptor axons requires recruitment of p21-activated kinase (Pak) to the membrane by the SH2-SH3 adaptor Dock. Here, we identify the guanine nucleotide exchange factor (GEF) Trio as another essential component in photoreceptor axon guidance. Regulated exchange activity of one of the two Trio GEF domains is critical for accurate pathfinding. This GEF domain...

متن کامل

The Human Rho-GEF Trio and Its Target GTPase RhoG Are Involved in the NGF Pathway, Leading to Neurite Outgrowth

Rho-GTPases control a wide range of physiological processes by regulating actin cytoskeleton dynamics. Numerous studies on neuronal cell lines have established that Rac, Cdc42, and RhoG activate neurite extension, while RhoA mediates neurite retraction. Guanine nucleotide exchange factors (GEFs) activate Rho-GTPases by accelerating GDP/GTP exchange. Trio displays two Rho-GEF domains, GEFD1, act...

متن کامل

The Rac GTP Exchange Factor TIAM-1 Acts with CDC-42 and the Guidance Receptor UNC-40/DCC in Neuronal Protrusion and Axon Guidance

The mechanisms linking guidance receptors to cytoskeletal dynamics in the growth cone during axon extension remain mysterious. The Rho-family GTPases Rac and CDC-42 are key regulators of growth cone lamellipodia and filopodia formation, yet little is understood about how these molecules interact in growth cone outgrowth or how the activities of these molecules are regulated in distinct contexts...

متن کامل

A RAC/CDC-42–Independent GIT/PIX/PAK Signaling Pathway Mediates Cell Migration in C. elegans

P21 activated kinase (PAK), PAK interacting exchange factor (PIX), and G protein coupled receptor kinase interactor (GIT) compose a highly conserved signaling module controlling cell migrations, immune system signaling, and the formation of the mammalian nervous system. Traditionally, this signaling module is thought to facilitate the function of RAC and CDC-42 GTPases by allowing for the recru...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 108 14  شماره 

صفحات  -

تاریخ انتشار 2011